客户案例
电商地推补单
不降权刷单
快速补单
地推补单

地推补单 -亲测好用!Google发布了一个新的Tensorflow物体识别API

时间:2017-08-31 来源:QQ6699598
淘宝刷单|天猫刷单|电商刷单|地推刷单|快速刷单|安全刷单

地推补单 -最安全刷单平台—支持淘宝天猫京东拼多多抖音等店铺!不为便宜付款,只为效果买单. 50万遍及全国的真实买家,人群更加精准. 1人1号,真实购物流程下单,做单更安全. 精细化刷单可获得更多淘内免费流量. 精细化刷单,超快提升权重排名. 支持资金垫付,让您刷单零风险. 联系电话:18373873997,QQ:370848424,中国最大的淘宝地推刷单平台,严格实名,全国200多个地区现场放单,更安全,更快捷,投入产出比远远高于直通车,是您开店必备的营销利器,快速打造淘宝权重店铺。 人气排名平台宗旨:提供优质刷单资源,给商家强有力的保障让天下没有难做的店铺! 淘宝刷单,淘宝精刷,淘宝地推,天猫精刷,天猫刷单,天猫地推,安全刷单,安全补单,地推刷单,地推补单,快速刷单,电商刷单,电商补单,安全地推补单,补单,快速补单,真实地推补单,快速地推补单,不降权刷单,不降权精刷,不降权地推补单,地推真实补单,地推安全补单,地推爆款补单,电商地推补单,淘宝刷单,天猫刷单,拼多多刷单,电商刷单,安全刷单,淘宝补单,天猫补单,拼多多补单,快速刷单,地推刷单,淘宝刷销量,天猫刷销量,拼多多刷销量,电商补销量,安全补销量,安全补单,电商补单,淘宝精刷,天猫精刷 .



做图像识别有很多不同的途径。谷歌最近发布了一个使用Tensorflow的物体识别API,让计算机视觉在各方面都更进了一步。  

这篇文章将带你测试这个新的API,并且把它应用在youtube上(可以在GitHub上获取用到的全部代码,链接),结果如下:

亲测好用!Google发布了一个新的Tensorflow物体识别API

API概述

这个API是用COCO(文本中的常见物体)数据集(http://mscoco.org/)训练出来的。这是一个大约有30万张图像、90种最常见物体的数据集。物体的样本包括:

亲测好用!Google发布了一个新的Tensorflow物体识别API

COCO数据集的一些物体种类

这个API提供了5种不同的模型,使用者可以通过设置不同检测边界范围来平衡运行速度和准确率。

亲测好用!Google发布了一个新的Tensorflow物体识别API上图中的mAP(平均精度)是检测边界框的准确率和回召率的乘积。这是一个很好的混合测度,在评价模型对目标物体的敏锐度和它是否能很好的避免虚假目标中非常好用。mAP值越高,模型的准确度越高,但运行速度会相应下降。

(想要了解更多跟模型有关的知识:链接

实测时间

我决定使用最轻量级的模型(ssd_mobilenet)。主要步骤如下:

1. 下载一个打包模型(.pb-protobuf)并把它载入缓存

2. 使用内置的辅助代码来载入标签,类别,可视化工具等等。

3. 建立一个新的会话,在图片上运行模型。

总体来说步骤非常简单。而且这个API文档还提供了一些能运行这些主要步骤的Jupyter文档——链接

这个模型在实例图像上表现得相当出色(如下图):

亲测好用!Google发布了一个新的Tensorflow物体识别API

亲测好用!Google发布了一个新的Tensorflow物体识别API

更进一步——在视频上运行上

接下来我打算在视频上尝试这个API。我使用了Python moviepy库,主要步骤如下:

  • 首先,使用VideoFileClip函数从视频中提取图像;

  • 然后使用fl_image函数在视频中提取图像,并在上面应用物体识别API。fl_image是一个很有用的函数,可以提取图像并把它替换为修改后的图像。通过这个函数就可以实现在每个视频上提取图像并应用物体识别;

  • 最后,把所有处理过的图像片段合并成一个新视频。

对于3-4秒的片段,这个程序需要花费大概1分钟的时间来运行。但鉴于我们使用的是一个载入缓存的模型,而且没有使用GPU,我们实现的效果还是很惊艳的!很难相信只用这么一点代码,就可以以很高的准确率检测并且在很多常见物体上画出边界框。

当然,我们还是能看到有一些表现有待提升。比如下面的例子。这个视频里的鸟完全没有被检测出来。

亲测好用!Google发布了一个新的Tensorflow物体识别API

再进一步,继续探索

几个进一步探索这个API的想法:

  • 尝试一些准确率更高但成本也更高的模型,看看他们有什么不同;

  • 寻找加速这个API的方法,这样它就可以被用于车载装置上进行实时物体检测;

  • 谷歌也提供了一些技能来应用这些模型进行传递学习。例如,载入打包模型后添加一个带有不同图像类别的输出层。

转载36氪:http://36kr.com/p/5090812.html